Northern peatlands provide important global and regional ecosystem services (carbon storage, water storage, and biodiversity). However, these ecosystems face increases in the severity, areal extent and frequency of climate-mediated (e.g. wildfire and drought) and land-use change (e.g. drainage, flooding and mining) disturbances that are placing the future security of these critical ecosystem services in doubt. Here, we provide the first detailed synthesis of autogenic hydrological feedbacks that operate within northern peatlands to regulate their response to changes in seasonal water deficit and varying disturbances. We review, synthesize and critique the current process-based understanding and qualitatively assess the relative strengths of these feedbacks for different peatland types within different climate regions. We suggest that understanding the role of hydrological feedbacks in regulating changes in precipitation and temperature are essential for understanding the resistance, resilience and vulnerability of northern peatlands to a changing climate. Finally, we propose that these hydrological feedbacks also represent the foundation of developing an ecohydrological understanding of coupled hydrological, biogeochemical and ecological feedbacks.