Suckling stimuli induce somatodendritic oxytocin (OT) release from supraoptic nucleus (SON) neurons, which raises intranuclear OT concentrations and contributes to the effectiveness of the milk-ejection reflex. To clarify how such changes in OT concentrations modulate the activity of OT neurons, we examined OT effects using whole cell patch-clamp recordings from SON neurons in slices from lactating rats. Progressive increases from extremely low OT concentrations (0.1-10 fM) to high concentrations (0.1-10 nM) induced excitation and subsequent spike frequency reduction (SFR) in OT neurons. Significant effects of OT on firing rates were observed starting at 1 fM, reached peak level from 1 fM to 1 pM before SFR occurred in most neurons. The buildup of OT concentrations progressively promoted depolarization of membrane potential, spike broadening, decreases in spike amplitude, and increases in the rise time of spike afterhyperpolarizations, which were unrelated to firing rate. However, intermittent application of OT (1 fM, 1 pM, and 1 nM, each for 5 min) evoked dose-dependent excitation but not the SFR. Application of 1 pM OT for 40 min simulated the effects of progressively increasing OT concentrations. Vasopressin neurons were also activated by OT but did not show SFR. Consistent with presynaptic loci of OT action, ionotropic glutamate receptor antagonists reduced OT effects on firing rate, whereas bicuculline did not change the excitatory effects. These results suggest that the specific autoregulatory effects of OT, and perhaps other neuropeptides as well, are time and concentration dependent.