The supply chain comprehensively considers problems with different levels of complexity. Nowadays, design of distribution networks and production scheduling are some of the most complex problems in logistics. It is widely known that large problems cannot be solved through exact methods. Also, specific optimization software is frequently needed. To overcome this situation, the development and application of search algorithms have been proposed to obtain approximate solutions to large problems within reasonable time. In this context, the present chapter describes the development of Genetic Algorithms (an evolutionary search algorithm) for vehicle routing, product selection, and production scheduling problems within the supply chain. These algorithms were evaluated by using well-known test instances. The advances of this work provide the general discussions associated to designing these search algorithms for logistics problems.