Considerable progress has been made toward understanding the function of the primate rhinal cortex, comprising the entorhinal (ErC) and perirhinal (PrC) cortices. However, translating animal models to human memory has been limited by the technological problems associated with characterizing neural structures in vivo. Functional correlates of hippocampal and rhinal cortex volume changes were examined in a sample of 61 temporal lobe epilepsy patients with mesial temporal sclerosis (MTS; 33 left, 28 right). Patients were administered the Wechsler Adult Intelligence Scale (revised or third edition), the Wechsler Memory Scale (revised or third edition), and a spatial maze task. Neuropsychological data, together with rhinal cortex and hippocampal volumes, collected in our earlier study (O'Brien CE, Bowden SC, Whelan G, Cook MJ, unpublished observations), were analyzed using multiple regression. The only significant predictor of verbal memory function was the difference score between the volume of left hippocampus and the left PrC. Spatial maze scores were predicted by the bilateral sum of ErC volume. The difference score between the left hippocampus and left PrC volumes was the most powerful predictor of verbal episodic memory. Right hippocampal volume was not a significant predictor of nonverbal episodic memory. Verbal and nonverbal semantic memory were not significantly predicted by any combination of rhinal cortex structures. This quantitative study suggests a lateralized or material-specific memory function for the left hippocampus and left PrC, in contrast to the bilateral role of the ErC. The left hippocampus and left PrC appear to act on verbal memory function through an opposing relationship. Finally, differentiation between hippocampal and subhippocampal components in terms of episodic and semantic memory, respectively, could not be supported by the current data.