Since 1968, when the Golomb-Welch conjecture was raised, it has become the main motive power behind the progress in the area of the perfect Lee codes. Although there is a vast literature on the topic and it is widely believed to be true, this conjecture is far from being solved. In this paper, we provide a survey of papers on the Golomb-Welch conjecture. Further, new results on Golomb-Welch conjecture dealing with perfect Lee codes of large radii are presented. Algebraic ways of tackling the conjecture in the future are discussed as well. Finally, a brief survey of research inspired by the conjecture is given.