2017
DOI: 10.48550/arxiv.1701.06359
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Factorization of second-order strictly hyperbolic operators with logarithmic slow scale coefficients and generalized microlocal approximations

Martina Glogowatz

Abstract: We give a factorization procedure for a strictly hyperbolic partial differential operator of second order with logarithmic slow scale coefficients. From this we can microlocally diagonalize the full wave operator which results in a coupled system of two first-order pseudodifferential equations in a microlocal sense. Under the assumption that the full wave equation is microlocal regular in a fixed domain of the phase space, we can approximate the problem by two one-way wave equations where a dissipative term is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?