We show that all Dirichlet series, linear combinations of them and their analytical continuations represent probability amplitudes for measurements on time-dependent quantum systems. In particular, we connect an arbitrary Dirichlet series to the time evolution of an appropriately prepared quantum state in a non-linear oscillator with logarithmic energy spectrum. However, the realization of a superposition of two Dirichlet sums and its analytical continuation requires two quantum systems which are entangled, and a joint measurement. We illustrate our approach of implementing arbitrary Dirichlet series in quantum systems using the example of the Riemann zeta function and relate its non-trivial zeros to the interference of two quantum states reminiscent of a Schrödinger cat.