Traditional computer modelling is performed using CAD systems. Everything starts with a constructor idea. They present their concept on a technical drawing and then perform it in a virtual environment of a 3D model. This model may then be manufactured with the use of available methods. The problem arises when technical documentation of an object, for example, a tooth model, is not available.2D images are the traditional way of presenting anatomical structures; unfortunately, this method is sometimes ineffective. In advanced cases of dental conditions, there are difficulties in the recognition and proper interpretation of 2D images of the affected area. This is why other ways to show the shape of the complex internal structures have been researched, such as the (3DP and FDM). They were similarly aligned in the work space of both printers to maintain similar conditions of printing, and similar layer thicknesses of 0.1 mm and 0.13 mm were used. The printed models were scanned using a focus variation (FV) microscope. The scanned geometry of the models of the two teeth was compared with the geometry of the teeth after their segmentation and filtering. A fitting process was carried out using the best fit algorithm with a fitting condition of 0.001 mm. The achieved accuracy of the FV measurements was significantly higher than the accuracy of the used printing methods. FV can be applied to performing 3D scans of complex shapes such as the crown and roots of a tooth. 3DP models have more homogenous structure, whereas layer structure is easy to recognize for FDM models. Due to that, the 3DP models have to be strengthened using infiltration, which makes it more difficult to predict the final dimensions and to achieve required accuracy. Keywords: dental model, reverse engineering, rapid prototyping, focus variation Highlights • The accuracy of FDM and 3DP techniques were examined in terms of manufacturing dental models such as tooth models.• The infiltration applied to the 3DP models reduced in accuracy compared to FDM models.• For the FDM models, the values of mean deviation were negative and met the accuracy specified by the printer's manufacturer.• Due to infiltration the values of mean deviation of 3DF models were positive.• The infiltration also caused the models manufactured with the FDM to be more accurate than the 3DP ones.• It was determined that the focus variation method can be applied to measure parts with a complex shape, such as the crown and roots of a tooth.