This study was conducted to compare the hydrogen embrittlement (HE) resistance of austempered 4340 steel with quenched and tempered (Q&T) 4340 steel with an identical yield strength (YS) of 1340 MPa (194 ksi). A baseline comparison showed that the austempered steel with a lower bainite microstructure exhibited higher hardness, tensile strengths, Charpy V-notch (CVN) impact toughness, and ductility at both low 233 K (-40 F) and ambient temperatures, as compared to the Q&T steel with a martensite microstructure. After machining and just prior to testing, subsized CVN specimens and notched bend specimens were immersed in hydrochloric acid-water baths. The HE resistance was higher for the austempered steel than the Q&T steel. No differences in room-temperature CVN energy resulted from hydrogen charging of the austempered and Q&T steels vs their unexposed counterparts. However, in the notched bend specimens, the hydrogen charging caused significant peak load decreases (40 pct) for the Q&T steel, while the austempered steel exhibited only small (6 pct) decreases in peak load. Intergranular (IG) fracture occurred solely in the charged Q&T bend samples, which is further evidence of their embrittlement.