Summary
We propose a novel method for estimating average fracture compressibility cf¯ during flowback process and apply it to flowback data from 10 multifractured horizontal wells completed in Woodford (WF) and Meramec (MM) formations. We conduct complementary diagnostic flow-regime analyses and calculate cf¯ by combining a flowing-material-balance (FMB) equation with pressure-normalized-rate (PNR)-decline analysis.
Flowback data of these wells show up to 2 weeks of single-phase water production followed by hydrocarbon breakthrough. Plots of water-rate-normalized pressure and its derivative show pronounced unit slopes, suggesting boundary-dominated flow (BDF) of water in fractures during single-phase flow. Water PNR decline curves follow a harmonic trend during single-phase- and multiphase-flow periods. Ultimate water production from the forecasted harmonic trend gives an estimate of initial fracture volume. The cf¯ estimates for these wells are verified by comparing them with the ones from the Aguilera (1999) type curves for natural fractures and experimental data. The results show that our cf¯ estimates (4 to 22×10−5 psi−1) are close to the lower limit of the values estimated by previous studies, which can be explained by the presence of proppants in hydraulic fractures.