1. Sodium transport across isolated frog skin, as measured by the short-circuit current, was decreased by acetylsalicylic acid, mefenamic acid, paracetamol and phenylbutazone. Indomethacin (6 x 106 M) had a biphasic effect on the short-circuit current: a transient increase followed by a sustained decrease. 2. The release of prostaglandin-like material from the skin was reduced by acetylsalicylic acid and indomethacin. Paracetamol caused a significant reduction in the short-circuit current response of the skin to low doses of arachidonic acid, but the response to the highest dose tested was not significantly altered. 3. Indomethacin (6 x 106 M) increased the sensitivity of the skin to applied prostaglandin E1. The other prostaglandin synthetase inhibitors did not have this effect. Indomethacin (6 x 106 M) also enhanced the effect of antidiuretic hormone on the short-circuit current. 4. Indomethacin (30 x 106 M) increased the short-circuit current and diminished the response to applied prostaglandin E1. 5. In sulphate Ringer, theophylline increased the short-circuit current and diminished the response to prostaglandin E1. 6. Prostaglandin E1 increased the levels of cyclic AMP in frog skin and these increases preceded the increases in short-circuit current. There was a seasonal variation in the level of cyclic AMP in the skin: the levels in winter exceeded those in summer. There was also a seasonal variation in the cyclic AMP response to prostaglandin E1: the winter response was greater than that in summer. 7. Indomethacin (6 x 106 M) had a biphasic effect on cyclic AMP levels in the skin, an initial increase followed by a decrease. Indomethacin also potentiated prostaglandin E1 stimulated cyclic AMP accumulation. 8. Theophylline increased cyclic AMP levels in the skin and potentiated prostaglandin E1 stimulated cyclic AMP accumulation. W. J. HALL AND OTHERS 9. Pre-treatment of the skin with theophylline reversed the effects of cyclic AMP on the short-circuit current and open-circuit potential. 10. It is concluded that endogenous prostaglandins help to maintain sodium transport across isolated frog skin and that the effects of E-type prostaglandins on the short-circuit current are mediated by increased cyclic AMP levels. The transient increase in short-circuit current and the increased skin sensitivity caused by indomethacin (6 x 10-6 mI) are attributed to inhibition of phosphodiesterase activity. The failure of theo-phylline to potentiate the short-circuit current response of the skin to prostaglandin E1 is attributed to alteration of cyclic AMP action on the skin by theophylline.