This study focuses on the stability analysis of slopes reinforced by soil nailing. The effects of slope geometry and nail parameters on slope stability are investigated using PLAXIS 2D. Four different slope angles and three different backslope angles are considered for assessing the effect of slope geometry on the stability of a nailed slope. The factor of safety (FS) was found to decrease with the increasing values of the slope angle as well as the backslope angle. The influence of different nail parameters (nail inclination, nail length, and nail spacing) was also investigated. With the increase in nail inclination, FS was found to increase initially and thereafter, reaching a peak value followed by a drop in FS. The optimum nail inclination was found between 0 and 25° at a horizontal angle, depending on the different slope geometries, which is evident from observation of the slip surface as well. With the increase of nail length, FS increases; however, the increase was small after L/H (length of nail/height of slope) reached a value of 0.9. Moreover, increasing the length of the nail was found to be effective in reducing the lateral movement of the slope. The maximum nail forces are observed in the bottom-most row of nails and increase with the depth. The inclusion of soil nailing with optimum nail parameters can increase FS by 29–75% depending on the slope geometry, signifying the effectiveness of nailing.