Natural and anthropogenic disturbances alter canopy structure, understory vegetation, amount of woody debris, and the litter and soil layers in forest ecosystems. These environmental changes impact forest communities, including ground-dwelling invertebrates that are key regulators of ecosystem processes. Variation in frequency, intensity, duration, and spatial scale of disturbances affect the magnitude of these environmental changes and how forest communities and ecosystems are impacted over time. We propose conceptual models that describe the dynamic temporal effects of disturbance caused by invasive insects, wind, and salvage logging on canopy gap formation and accumulation of coarse woody debris (CWD), and their impacts on ground-dwelling invertebrate communities. In the context of this framework, predictions are generated and their implications for ground-dwelling invertebrate communities are discussed.