Microvascular dysfunction (MVD) is considered a crucial pathway in the development and progression of cardiometabolic and renal disease and is associated with increased cardiovascular mortality. MVD often coexists with or even precedes macrovascular disease, possibly due to shared mechanisms of vascular damage, such as inflammatory processes and oxidative stress. One of the first events in MVD is endothelial dysfunction. With the use of different physiologic or pharmacologic stimuli, endothelium-dependent (micro)vascular reactivity can be studied. This reactivity depends on the balance between various mediators, including nitric oxide, endothelin, and prostanoids, among others. The measurement of microvascular (endothelial) function is important to understand the pathophysiologic mechanisms that contribute to MVD and the role of MVD in the development and progression of cardiometabolic/renal disease. Here, we review a selection of direct, noninvasive techniques for measuring human microcirculation, with a focus on methods, interpretation, and limitations from the perspective of chronic cardiometabolic and renal disease.