Benefits in terms of speech recognition and other performance measures are less clear. Several studies have indicated that deactivation of apical electrodes results in poorer speech recognition performance, but these have been mostly acute studies where the subjects have been accustomed to the full complement of electrodes, thus making interpretation difficult. Some chronic studies have suggested that apical electrodes do provide additional performance benefit, but others have shown performance improvement after deactivating some of the apical electrodes. Whether or not deeply inserted electrodes can offer performance benefits, there is evidence that currently available designs tend to produce more intracochlear trauma than shorter arrays, in terms of loss of residual acoustic hearing and reduction of the neural substrate. This may have important long-term consequences for the user. Furthermore, as it is possible that subjects with better low-frequency residual hearing are more likely to benefit from the inclusion of apical electrodes, there may be a potential clinical dilemma as the same subjects are those most likely to benefit from bimodal electroacoustic stimulation, requiring a relatively shallow insertion.