The occurrence and severity of truck crashes generally involve complex interactions among factors correlated to driver characteristics, vehicle attributes, roadway geometry and environment conditions. Thus, the elucidation of the significance of these potential contributory factors is critical when developing safety improvement countermeasures. To this end, data from a total of 1175 crashes involving at least one large truck and collected between 2010 and 2015 from two typical freeways in mountainous areas in Jiangxi and Shaanxi (China), were analyzed using a partial proportional odds model to determine the significant risk factors for injury severity of these crashes. Fourteen total explanatory variables, including the age of the driver, seatbelt status, number of vehicle involved, type of transport, freight conditions, brake system status, disregarding speed limit or not, following distance, horizontal roadway alignment, vertical roadway alignment, seasons, day of week, time of crash, and weather were found to significantly affect the severities of the truck crashes. In addition, old drivers, involvement of multiple vehicles, failure to wear seatbelts, overloading, speeding, brake failure and risky following behavior, curve section, seasons (summer, autumn and winter), nighttime period, and adverse weather conditions were also found to significantly increase the likelihood of injury and fatality crashes. Taken together, these findings may serve as a useful guide for developing legislation and technical countermeasures to ensure truck safety on freeways in mountainous regions, particularly in the context of a developing country.