Nature provides us with a wealth of inspiration for the design of bionic functional surfaces. Numerous types of plant leaves with exceptional wettability, anisotropy, and adhesion are extensively employed in many engineering applications. Inspired by the wettability, anisotropy, and adhesion of indocalamus leaves, bionic upper and lower surfaces (BUSs and BLSs) of the indocalamus leaf were successfully prepared using a facile approach combining laser scanning and chemical modification. The results demonstrated the BUSs and BLSs obtained similar structural features to the upper and lower surfaces of the indocalamus leaf and exhibited enhanced and more-controllable wettability, anisotropy, and adhesion. More importantly, we conducted a detailed comparative analysis of the wettability, anisotropy, and adhesion between BUSs and BLSs. Finally, BUSs and BLSs were also explored for the corresponding potential applications, including self-cleaning, liquid manipulation, and fog collection, thereby broadening their practical utility. We believe that this study can contribute to the enrichment of the research on novel biological models and provide significant insights into the development of multifunctional bionic surfaces.