This version is available at https://strathprints.strath.ac.uk/60360/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
| P a g eA comparative study on the design of an environmentally friendly RoPax ferry using CFD software, it is possible to obtain useful results at an early stage of a typical ship design process.The key objective of this paper is to design an environmentally friendly RoPax ferry utilising CAD and CFD tools. This aim was achieved by developing a new RoPax design with a new green power plant configuration releasing less greenhouse gas (GHG) emissions to the atmosphere. The performance of the green power plant was assessed through making a comparison to other power plant options. It is clearly shown in the paper that the hybrid LNG turbine is the most environmentallyfriendly power option amongst the two other power plants investigated in this piece of research.