Concordance between mutations in the primary papillary thyroid carcinoma (PTC) and the paired x lymph node metastasis may elucidate the potential role of molecular targeted therapy in advanced stages. BRAF and NRAS mutations in primary PTC (n = 253) with corresponding metastatic lymph node (n = 46) were analyzed utilizing StripAssays (ViennaLab Diagnostics). Statistical analysis was performed using (SPSS, Inc.), version 24.0 with a p-value of <0.05, and concordance via kappa agreement. BRAF mutation frequency in conventional PTC (cPTC): 56.8%, papillary thyroid microcarcinoma (PTMC): 36.5%, PTMC-FV: 2.7% and PTC-FV: 4.1%. NRAS mutation frequency in PTC-FV: 28.6%, PTMC: 28.6%, PTMC-FV: 23.8%, and cPTC: 19.0%. BRAF mutation correlation with older age in cPTC (42.6 versus 33.6) years (p < 0.001) was the only significant clinicopathologic parameter. BRAF mutations were concordant in the primary and its corresponding lymph node deposits in PTC with a kappa of 0.77 (p-value < 0.0001). BRAF mutations are predominant in cPTC and PTMC while NRAS mutations in PTC-FV. BRAF mutation is conserved in metastatic lymph node deposits, thus BRAF is an early mutational pathogenetic driver. Therefore, targeted therapy is potential in recurrent and advanced stage disease.