The human body at cellular resolution: the NIH Human Biomolecular Atlas Program HuBMAP consortium* Transformative technologies are enabling the construction of three-dimensional maps of tissues with unprecedented spatial and molecular resolution. Over the next seven years, the NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) intends to develop a widely accessible framework for comprehensively mapping the human body at singlecell resolution by supporting technology development, data acquisition, and detailed spatial mapping. HuBMAP will integrate its efforts with other funding agencies, programs, consortia, and the biomedical research community at large towards the shared vision of a comprehensive, accessible three-dimensional molecular and cellular atlas of the human body, in health and under various disease conditions. t he human body is an incredible machine. Trillions of cells, organized across an array of spatial scales and a multitude of functional states, contribute to a symphony of physiology. While we broadly know how cells are organized in most tissues, a comprehensive understanding of the cellular and molecular states and interactive networks resident in the tissues and organs, from organizational and functional perspectives, is lacking. The specific three-dimensional organization of different cell types, together with the effects of cell-cell and cell-matrix interactions in their natural milieu, have a profound impact on normal function, natural ageing, tissue remodelling, and disease progression in different tissues and organs. Recently, new technologies have enabled the molecular characterization of a multitude of cell types 1-4 and mapping of their spatial relationships in complex tissues at unprecedented scale and single-cell resolution. These advances create the opportunity to build a high-resolution atlas of three-dimensional maps of human tissues and organs. HuBMAP (https://commonfund.nih.gov/hubmap) is an NIHsponsored program with the goals of developing an open framework and technologies for mapping the human body at cellular resolution as well as generating foundational maps for several tissues obtained from normal individuals across a wide range of ages. A previous NIH-sponsored project, GTEx 5 , examined DNA variants and bulk tissue expression patterns across approximately a thousand individuals, but HuBMAP is a distinct project focused on generating molecular maps that are spatially resolved at the single-cell level but using samples from a more limited number of people. To achieve these goals, HuBMAP has been designed as a cohesive and collaborative organization, with a culture of openness and sharing using team science-based approaches 6. The HuBMAP Consortium (https://hubmapconsortium.org/) will actively work with other ongoing initiatives including the Human Cell Atlas 7 , Human Protein Atlas 8 , LIfeTime (https://lifetime-fetflagship.eu/), and related NIH-funded consortia that are mapping specific organs (including the brain 9 , lungs (https://www.lungmap.net/), kidney (https...