A multi-stress test rig was built to investigate the effect of many start-stops (load cycling) on hydropower generator insulation. To emulate real-life start-stops, stator bars were subjected to accelerated temperature cycling by circulating a 3.5 kA current and then cooling down with fans while high voltage (service voltage) was applied simultaneously to the insulation. A total of 250 load cycles were applied. Partial discharges (PD) were recorded on-line during load cycling, and after every 50 cycles, off-line dielectric loss and PD measurements were conducted. There was an apparent increase in dielectric losses after they had been subjected to a total of 250 load cycles. During load cycling, the PD level generally decreased with temperature, but there was a temporary increase in the PD activity during temperature rise and fall. This trend can be explained by different thermal expansion in copper and insulating material (epoxymica), suggesting that a stator bar that is load-cycled will be exposed to substantially higher PD levels than a stator bar under a uniform load and temperature, leading to further deterioration of the insulation quality.