This study investigated the microstructure, microhardness, and residual compressive stress of 14Cr12Ni3Mo2VN martensitic stainless steel treated with high-frequency induction quenching (HFIQ) and laser shock peening (LSP). Using rotating bending corrosion fatigue testing, the corrosion fatigue performance was analyzed. Results show that a microstructural gradient formed after HFIQ and LSP: the surface layer consisted of nanocrystals, the subsurface layer of short lath martensite, and the core of thick lath martensite. A hardness gradient was introduced, with surface hardness reaching 524 Hv0.1, 163 Hv0.1 higher than the core hardness. A residual compressive stress field was introduced near the surface, with a maximum residual compressive stress of approximately −575 MPa at a depth of 0.1 mm. Corrosion fatigue results indicate that cycle loading times of samples treated with HFIQ and LSP were 2.88, 2.04, and 1.45 times higher than untreated, HFIQ-only, and LSP-only samples, respectively. Transmission electron microscopy (TEM) characterization showed that HFIQ reduced the lath martensite size, while the ultra-high strain rate induced by LSP likely caused dynamic recrystallization, forming numerous sub-boundaries and refining grains, which increased surface hardness. The plastic strain induced by LSP introduced residual compressive stress, counteracting tensile stress and hindering the initiation and propagation of corrosion fatigue cracks.