Heat exchangers, as essential devices for facilitating heat transfer, have found a variety applications in various industries. However, the occurrence of corrosion-related failures in real-world scenarios remains a prevalent problem that can lead to catastrophic incidents. This paper investigates the problem of corrosion perforation on the outlet flange of a heat exchanger in a sour steam stripper from a petrochemical company. Failure analysis was performed using physical testing and chemical analysis, metallographic examination, microscopic observation, and energy spectrum analysis. Intergranular corrosion experiments and flow calculations were performed to verify the analysis. The results indicate that the main cause of the flange corrosion perforation was the formation of a highly concentrated NH4HS aqueous solution during the cooling process of the NH3, H2S, and water vapor in the fluid passing through the heat exchanger, and the velocity was too high, which triggered alkali-sour water washout corrosion. To prevent the recurrence of similar corrosion perforations, recommendations for material and process optimization are proposed to effectively reduce the safety production risks in refinery units and provide valuable information for the safe long-term operation of a sour steam stripper.