Prognostics, which refers to the inference of an expected time-to-failure for a system, is made difficult by the need to track and predict the trajectories of real-valued system parameters over essentially unbounded domains, and by the need to prescribe a subset of these domains in which an alarm should be raised. In this paper we propose an idea, one whereby these problems are avoided: instead of physical system or sensor parameters, a vector corresponding to the failure probabilities of the system's sensors (which of course are bounded within the unit hypercube) is tracked. With the help of a system diagnosis model, the corresponding the fault signatures can be identified as terminal states for these probability vectors. To perform the tracking, Kalman filters and interacting multiple model (IMM) estimators are implemented for each sensor. The work that has been completed thus far shows promising results in both large and small-scale systems, with the impending failures being detected quickly and the prediction of the time until this failure occurs being determined accurately.