The extent to which load transfer in a diseased mandible with odontogenic tumour might influence the potential risk of pathological fracture has scarcely been investigated. The study sought to investigate the quantitative deviations in load transfer across healthy and cancer-affected (diseased) mandibles having odontogenic tumours. The effect of size of the tumours (small: 9 mm diameter, large: 19 mm diameter), and variation in bone mechanical (elastic) properties of the mandible on load transfer in cancer-affected mandibles during a mastication cycle have been investigated. Based on patient-specific computed tomography–scan datasets, detailed three-dimensional finite element models of healthy and diseased mandibles were developed. High stresses of 25–30 MPa and strains ∼700 µε were observed in the healthy mandible during the right molar bite. However, marginal deviations were observed in principal stress distributions in the diseased mandibles with small- and large-sized tumours, as compared to the healthy mandible. Maximum principal strains of ∼1474 µε were found in the body region adjacent to the symphysis region for small-sized tumour. Whereas for large-sized tumour, maximum strains of ∼2700 µε were observed in the right buccal regions. Reduction in Young’s modulus due to different stages of odontogenic tumours had a localised effect on the principal stress distributions, but triggered an abrupt increase in the principal tensile strains. It appears that there is a potential risk of pathological fracture for large-sized odontogenic tumour, owing to high tensile stresses and strains.