The automobile industry has started using adhesive bonding to join load bearing components which aerospace industry has been using for decades. Adhesive lap joints are used frequently in the manufacture of automobile. In present study, structural adhesives were used to join the aluminium alloy (AA5083 H111) with the HSS dual phase (DP780) steel. Adhesive bonding appears to be one of the appropriate methods of joining dissimilar materials. The aim of this work is to analyze the tensile strength of similar and dissimilar joints. The influence of various parameters was also investigated such as the overlap length and the bondline thickness of specimens. In DP steel, there is 22% increase in strength for similar lap joint when overlap length changes from 10 mm to 15 mm, while there is 45% increase in strength when it varies from 15 mm to 20 mm. Similarly in case of Al alloy, there is 26% increased strength for similar lap joints when length varies from 10 mm to 15 mm, while it increased to 42% when length changes from 15 mm to 25 mm and there is about 35% increase in strength for length varies from 20 mm to 25 mm. In case of dissimilar joints, firstly there is about 16% increase in strength then there is 5% decrease while after that there is 45% increase in strength. Adhesion failure, cohesion failure and mixed failure were obtained experimentally during failure mode analysis. As the strength of joint increases, failure mode shows a transition from adhesion failure to cohesion failure. From the literature survey it is evident that limited work has been carried out on analysis of shear-tensile strength of adhesively bonded steel and aluminium joint with variation in bonding parameters. Not much work on failure mode analysis of bonded joints during tensile testing has been reported. In present work a noval attempt has been made to analyze the shear-tensile strength and failure mode of adhesively bonded steel and aluminium joint with variation in bonding parameters.