Abstract:Recent research on fair regression focused on developing new fairness notions and approximation methods as target variables and even the sensitive attribute are continuous in the regression setting. However, all previous fair regression research assumed the training data and testing data are drawn from the same distributions. This assumption is often violated in real world due to the sample selection bias between the training and testing data. In this paper, we develop a framework for fair regression under sam… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.