2020 International Conference on Data Mining Workshops (ICDMW) 2020
DOI: 10.1109/icdmw51313.2020.00069
|View full text |Cite
|
Sign up to set email alerts
|

FairMixRep: Self-supervised Robust Representation Learning for Heterogeneous Data with Fairness constraints

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 14 publications
0
1
0
Order By: Relevance
“…Earlier works in fair representation learning intended to obfuscate any information about sensitive attributes to approximately satisfy demographic parity (Zemel et al, 2013) while a wealth of more recent works focus on using adversarial methods or feature disentanglement in latent spaces of VAEs (Locatello et al, 2019a;Kingma & Welling, 2013;Gretton et al, 2006;Louizos et al, 2015;Amini et al, 2019;Alemi et al, 2018;Burgess et al, 2018;Chen et al, 2018b;Kim & Mnih, 2018;Esmaeili et al, 2019;Song et al, 2019;Gitiaux & Rangwala, 2021;Rodríguez-Gálvez et al, 2020;Sarhan et al, 2020;Paul & Burlina, 2021;Chakraborty et al, 2020). In this setting, the literature has focused on optimizing on approximations of the mutual information between representations and sensitive attributes: maximum mean discrepancy (Gretton et al, 2006) for deterministic or variational (Li et al, 2014;Louizos et al, 2015) autoencoders (VAEs); cross-entropy of an adversarial network that predicts sensitive attributes from the representations (Edwards & Storkey, 2015;Xie et al, 2017;Beutel et al, 2017;Madras et al, 2018;Xu et al, 2018); balanced error rate on both target loss and adversary loss ; Weak-Conditional InfoNCE for conditional contrastive learning (Tsai et al, 2021).…”
Section: Introductionmentioning
confidence: 99%
“…Earlier works in fair representation learning intended to obfuscate any information about sensitive attributes to approximately satisfy demographic parity (Zemel et al, 2013) while a wealth of more recent works focus on using adversarial methods or feature disentanglement in latent spaces of VAEs (Locatello et al, 2019a;Kingma & Welling, 2013;Gretton et al, 2006;Louizos et al, 2015;Amini et al, 2019;Alemi et al, 2018;Burgess et al, 2018;Chen et al, 2018b;Kim & Mnih, 2018;Esmaeili et al, 2019;Song et al, 2019;Gitiaux & Rangwala, 2021;Rodríguez-Gálvez et al, 2020;Sarhan et al, 2020;Paul & Burlina, 2021;Chakraborty et al, 2020). In this setting, the literature has focused on optimizing on approximations of the mutual information between representations and sensitive attributes: maximum mean discrepancy (Gretton et al, 2006) for deterministic or variational (Li et al, 2014;Louizos et al, 2015) autoencoders (VAEs); cross-entropy of an adversarial network that predicts sensitive attributes from the representations (Edwards & Storkey, 2015;Xie et al, 2017;Beutel et al, 2017;Madras et al, 2018;Xu et al, 2018); balanced error rate on both target loss and adversary loss ; Weak-Conditional InfoNCE for conditional contrastive learning (Tsai et al, 2021).…”
Section: Introductionmentioning
confidence: 99%