“…Earlier works in fair representation learning intended to obfuscate any information about sensitive attributes to approximately satisfy demographic parity (Zemel et al, 2013) while a wealth of more recent works focus on using adversarial methods or feature disentanglement in latent spaces of VAEs (Locatello et al, 2019a;Kingma & Welling, 2013;Gretton et al, 2006;Louizos et al, 2015;Amini et al, 2019;Alemi et al, 2018;Burgess et al, 2018;Chen et al, 2018b;Kim & Mnih, 2018;Esmaeili et al, 2019;Song et al, 2019;Gitiaux & Rangwala, 2021;Rodríguez-Gálvez et al, 2020;Sarhan et al, 2020;Paul & Burlina, 2021;Chakraborty et al, 2020). In this setting, the literature has focused on optimizing on approximations of the mutual information between representations and sensitive attributes: maximum mean discrepancy (Gretton et al, 2006) for deterministic or variational (Li et al, 2014;Louizos et al, 2015) autoencoders (VAEs); cross-entropy of an adversarial network that predicts sensitive attributes from the representations (Edwards & Storkey, 2015;Xie et al, 2017;Beutel et al, 2017;Madras et al, 2018;Xu et al, 2018); balanced error rate on both target loss and adversary loss ; Weak-Conditional InfoNCE for conditional contrastive learning (Tsai et al, 2021).…”