Fairness and bias correction in machine learning for depression prediction across four study populations
Vien Ngoc Dang,
Anna Cascarano,
Rosa H. Mulder
et al.
Abstract:A significant level of stigma and inequality exists in mental healthcare, especially in under-served populations. Inequalities are reflected in the data collected for scientific purposes. When not properly accounted for, machine learning (ML) models learned from data can reinforce these structural inequalities or biases. Here, we present a systematic study of bias in ML models designed to predict depression in four different case studies covering different countries and populations. We find that standard ML ap… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.