False ceilings are often utilised in residential and commercial spaces as a way to contain and conceal necessary but unattractive building infrastructure, including mechanical, electrical, and plumbing services. Concealing such elements has made it difficult to perform periodic inspection safely for maintenance. To complement this, there have been increasing research interests in mobile robots in recent years that are capable of accessing hard-to-reach locations, thus allowing workers to perform inspections remotely. However, current initiatives are met with challenges arising from unstructured site conditions that hamper the robot’s productivity for false ceiling inspection. The paper adopts a top-down approach known as “Design for Robots”, taking into account four robot-inclusive design principles: activity, accessibility, safety, observability. Falcon, a class of inspection robots, was used as a benchmark to identify spatial constraints according to the four principles. Following this, a list of false ceiling design guidelines for each category are proposed.