2023
DOI: 10.1097/cin.0000000000000994
|View full text |Cite
|
Sign up to set email alerts
|

Fall Risk Prediction Models During the Initial COVID-19 Surge

Abstract: During the first COVID surge, multiple changes in nurse staffing and workflows were made to support care delivery in a resource-constrained environment. We hypothesized that there was a higher rate of inpatient falls during the COVID surge. Furthermore, we predicted that an automated predictive analytic algorithm would perform as well as the Johns Hopkins Fall Risk Assessment. A retrospective review of falls for 3 months before and the first 3 months of the first COVID surge was conducted. We determined the to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?