Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Few clinically validated biomarkers of ASD exist which can rapidly, accurately, and objectively identify autism during the first years of life and be used to support optimized treatment outcomes and advances in precision medicine. As such, the goal of the present study was to leverage both simple and computationally-advanced approaches to validate an eye-tracking measure of social attention preference, the GeoPref Test, among 1,863 ASD, delayed, or typical toddlers (12–48 months) referred from the community or general population via a primary care universal screening program. Toddlers participated in diagnostic and psychometric evaluations and the GeoPref Test: a 1-min movie containing side-by-side dynamic social and geometric images. Following testing, diagnosis was denoted as ASD, ASD features, LD, GDD, Other, typical sibling of ASD proband, or typical. Relative to other diagnostic groups, ASD toddlers exhibited the highest levels of visual attention towards geometric images and those with especially high fixation levels exhibited poor clinical profiles. Using the 69% fixation threshold, the GeoPref Test had 98% specificity, 17% sensitivity, 81% PPV, and 65% NPV. Sensitivity increased to 33% when saccades were included, with comparable validity across sex, ethnicity, or race. The GeoPref Test was also highly reliable up to 24 months following the initial test. Finally, fixation levels among twins concordant for ASD were significantly correlated, indicating that GeoPref Test performance may be genetically driven. As the GeoPref Test yields few false positives (~ 2%) and is equally valid across demographic categories, the current findings highlight the ability of the GeoPref Test to rapidly and accurately detect autism before the 2nd birthday in a subset of children and serve as a biomarker for a unique ASD subtype in clinical trials.
Few clinically validated biomarkers of ASD exist which can rapidly, accurately, and objectively identify autism during the first years of life and be used to support optimized treatment outcomes and advances in precision medicine. As such, the goal of the present study was to leverage both simple and computationally-advanced approaches to validate an eye-tracking measure of social attention preference, the GeoPref Test, among 1,863 ASD, delayed, or typical toddlers (12–48 months) referred from the community or general population via a primary care universal screening program. Toddlers participated in diagnostic and psychometric evaluations and the GeoPref Test: a 1-min movie containing side-by-side dynamic social and geometric images. Following testing, diagnosis was denoted as ASD, ASD features, LD, GDD, Other, typical sibling of ASD proband, or typical. Relative to other diagnostic groups, ASD toddlers exhibited the highest levels of visual attention towards geometric images and those with especially high fixation levels exhibited poor clinical profiles. Using the 69% fixation threshold, the GeoPref Test had 98% specificity, 17% sensitivity, 81% PPV, and 65% NPV. Sensitivity increased to 33% when saccades were included, with comparable validity across sex, ethnicity, or race. The GeoPref Test was also highly reliable up to 24 months following the initial test. Finally, fixation levels among twins concordant for ASD were significantly correlated, indicating that GeoPref Test performance may be genetically driven. As the GeoPref Test yields few false positives (~ 2%) and is equally valid across demographic categories, the current findings highlight the ability of the GeoPref Test to rapidly and accurately detect autism before the 2nd birthday in a subset of children and serve as a biomarker for a unique ASD subtype in clinical trials.
Research using the visual paired comparison task has shown that visual recognition memory across changing contexts is dependent on the integrity of the hippocampal formation in human adults and in monkeys. The acquisition of contextual flexibility may contribute to the change in memory performance that occurs late in the first year of life. To assess this skill, the images are presented on a background of one colour during familiarization and on a different coloured background during the recognition test. Our research showed that recognition memory is impaired by a change in context at 6 and 12 months of age but is unaffected at 18 and 24 months of age. The findings are discussed in relation to hippocampal development and the proposed developmental step in memory at 9-10 months of age.
Visual search studies with adults have shown that stimuli that contain a unique perceptual feature pop out from dissimilar distractors and are unaffected by the number of distractors. Studies with very young infants have suggested that they too might exhibit pop-out. However, infant studies have used paradigms in which pop-out is measured in seconds or minutes, whereas in adults pop-out occurs in milliseconds. In addition, with the previous infant paradigms the effects from higher cognitive processes such as memory cannot be separated from pop-out and selective attention. Consequently, whether infants exhibit the phenomenon of pop-out and have selective attention mechanisms as found in adults is not clear. This study was an initial attempt to design a paradigm that would provide a comparable measure between infants and adults, thereby allowing a more accurate determination of the developmental course of pop-out and selective attention mechanisms. To this end, we measured 3-month-olds' and adults' saccade latencies to visual arrays that contained either a + among Ls (target-present) or all Ls (target-absent) with set sizes of 1, 3, 5 or 8 items. In Experiment 1, infants' saccade latencies remained unchanged in the target-present conditions as set size increased, whereas their saccade latencies increased linearly in the target-absent conditions as set size increased. In Experiment 2, adults' saccade latencies in the target-present and target-absent conditions showed the same pattern as the infants. The only difference between the infants and adults was that the infants' saccade latencies were slower in every condition. These results indicate that infants do exhibit pop-out on a millisecond scale, that it is unaffected by the number of distractors, and likely have similar functioning selective attention mechanisms. Moreover, the results indicate that eye movement latencies are a more comparable and accurate measure for assessing the phenomenon of pop-out and underlying attentional mechanisms in infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.