The purpose of this paper is to present a general universal formula for k-variate survival functions for arbitrary k = 2, 3, •••, given all the univariate marginal survival functions. This universal form of k-variate probability distributions was obtained by means of "dependence functions" named "joiners" in the text. These joiners determine all the involved stochastic dependencies between the underlying random variables. However, in order that the presented formula (the form) represents a legitimate survival function, some necessary and sufficient conditions for the joiners had to be found. Basically, finding those conditions is the main task of this paper. This task was successfully performed for the case k = 2 and the main results for the case k = 3 were formulated as Theorem 1 and Theorem 2 in Section 4. Nevertheless, the hypothetical conditions valid for the general k ≥ 4 case were also formulated in Section 3 as the (very convincing) Hypothesis. As for the sufficient conditions for both the k = 3 and k ≥ 4 cases, the full generality was not achieved since two restrictions were imposed. Firstly, we limited ourselves to the, defined in the text, "continuous cases" (when the corresponding joint density exists and is continuous), and secondly we consider positive stochastic dependencies only. Nevertheless, the class of the k-variate distributions which can be constructed is very wide. The presented method of construction by means of joiners can be considered competitive to the copula methodology. As it is suggested in the paper the possibility of building a common theory of both copulae and joiners is quite possible, and the joiners may play the role of tools within the theory of copulae, and vice versa copulae may, for example, be used for finding proper joiners. Another independent feature of the joiners methodology is the possibility of constructing many new stochastic processes including stationary and Markovian.