Thyroid cancer poses a significant challenge in clinical management, necessitating precise diagnostic tools and treatment strategies for optimal patient outcomes. This review explores the evolving field of radiotracers in the diagnosis and management of thyroid cancer, focusing on prostate-specific membrane antigen (PSMA)-based radiotracers, fibroblast activation protein inhibitor (FAPI)-based radiotracers, Arg-Gly-Asp (RGD)-based radiotracers, and 18F-tetrafluoroborate (18F-TFB). PSMA-based radiotracers, initially developed for prostate cancer imaging, have shown promise in detecting thyroid cancer lesions; however, their detection rate is lower than 18F-FDG PET/CT. FAPI-based radiotracers, targeting fibroblast activation protein highly expressed in tumors, offer potential in the detection of lymph nodes and radioiodine-resistant metastases. RGD-based radiotracers, binding to integrin αvβ3 found on tumor cells and angiogenic blood vessels, demonstrate diagnostic accuracy in detecting radioiodine-resistant thyroid cancer metastases. 18F-TFB emerges as a promising PET tracer for imaging of lymph node metastases and recurrent DTC, offering advantages over traditional methods. Overall, these radiotracers show promise in enhancing diagnostic accuracy, patient stratification, and treatment selection in differentiated thyroid cancer, warranting further research and clinical validation. Given the promising staging capabilities of 18F-TFB and the efficacy of FAP-targeting tracers in advanced, potentially dedifferentiated cases, continued investigation in these domains is justified.