Noncooperative target spacecrafts are those assets in orbit that cannot convey any information about their states (position, attitude, and velocities) or facilitate rendezvous and docking/berthing (RVD/B) process. Designing a guidance, navigation, and control (GNC) module for the chaser in a RVD/B mission with noncooperative target should be inevitably solved for on-orbit servicing technologies. The proximity operations and the guidance for achieving rendezvous problems are addressed in this paper. The out-of-plane maneuvers of proximity operations are explored with distinct subphases, including a chaser far approach in the target鈥檚 orbit to the first hold point and a closer approach to the final berthing location. Accordingly, guidance solutions are chosen for each subphase from the standard Hill based Closhessy-Willtshire (CW) solution, elliptical fly-around, and Glideslope algorithms. The control is based on a linear quadratic regulator approach (LQR). At the final berthing location, attitude tracker based on a proportional derivative (PD) form is tested to synchronize the chaser and target attitudes. The paper analyzes the performance of both controllers in terms of the tracking ability and the robustness. Finally, it prescribes any restrictions that may be imposed on the guidance during any subphase which can help to improve the controllers tracking ability.