Abstract:The emission of a quantum cascade laser can be synchronized to the repetition rate of a femtosecond laser through the use of coherent injection seeding. This synchronization defines a sampling coherence between the terahertz laser emission and the femtosecond laser which enables coherent field detection. In this letter the sampling coherence is measured in the time-domain through the use of coherent and incoherent detection. For large seed amplitudes the emission is synchronized, while for small seed amplitudes the emission is non-synchronized. For intermediate seed amplitudes the emission exhibits a partial sampling coherence that is time-dependent. 211-212 (1982). 4. A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69(16), 2321-2323 (1996). 5. J. Dai, X. Xie, and X. C. Zhang, "Detection of broadband terahertz waves with a laser-induced plasma in gases," Phys. Rev. Lett. 97(10), 103903 (2006). 6. D. H. Auston and K. P. Cheung, "Coherent time-domain far-infrared spectroscopy," J. Opt. Soc. Am. B 2(4), 606-612 (1985). 7. C. A. Schmuttenmaer, "Exploring dynamics in the far-infrared with terahertz spectroscopy," Chem. Rev. 104(4), 1759-1780 (2004).
©2012 Optical Society of America
41(3),