Time and frequency (T&F) measurement with unprecedented accuracy is the backbone for several sophisticated technologies, commensurate with the evolution of human civilisation in the 20th century in terms of communication, positioning, navigation, and precision timing. This necessity drove researchers in the early 1950s to build atomic clocks that have now evolved to a state-of-the-art level, operating at optical wavelengths as optical atomic clocks, which use cold and trapped samples of atomic/ionic species and various other sophisticated diagnostic test techniques. Such ultrahigh-precision accurate clocks have made it possible to probe fundamental aspects of science through incredibly sensitive measurements. On the other hand, they meet the T&F synchronisation standards for classical and emerging quantum technologies at the desired level of accuracy. Considering the impact of optical atomic clocks in the second quantum revolution (quantum 2.0), they have been identified as an indispensable critical technology in worldwide quantum missions, including in India. This article reviews the present international scenario regarding optical atomic clocks and their related technologies and draws a roadmap for their indigenisation over the next decade.