The parasite Fasciola hepatica infects a broad range of mammals with
impunity. Following ingestion of parasites (metacercariae) by the host, newly
excysted juveniles (NEJ) emerge from their cysts, rapidly penetrate the duodenal wall
and migrate to the liver. Successful infection takes just a few hours and involves
negotiating hurdles presented by host macromolecules, tissues and micro-environments,
as well as the immune system. Here, transcriptome and proteome analysis of ex
vivo F. hepatica metacercariae and NEJ reveal the rapidity and multitude
of metabolic and developmental alterations that take place in order for the parasite
to establish infection. We found that metacercariae despite being encased in a cyst
are metabolically active, and primed for infection. Following excystment, NEJ expend
vital energy stores and rapidly adjust their metabolic pathways to cope with their
new and increasingly anaerobic environment. Temperature increases induce neoblast
proliferation and the remarkable up-regulation of genes associated with growth and
development. Cysteine proteases synthesized by gastrodermal cells are secreted to
facilitate invasion and tissue degradation, and tegumental transporters, such as
aquaporins, are varied to deal with osmotic/salinity changes. Major proteins of the
total NEJ secretome include proteases, protease inhibitors and anti-oxidants, and an
array of immunomodulators that likely disarm host innate immune effector cells. Thus,
the challenges of infection by F. hepatica parasites are met by
rapid metabolic and physiological adjustments that expedite tissue invasion and
immune evasion; these changes facilitate parasite growth, development and maturation.
Our molecular analysis of the critical processes involved in host invasion has
identified key targets for future drug and vaccine strategies directed at preventing
parasite infection.