2012
DOI: 10.1016/j.amc.2012.01.040
|View full text |Cite
|
Sign up to set email alerts
|

Fast and accurate method for high order Zernike moments computation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
13
0

Year Published

2012
2012
2016
2016

Publication Types

Select...
5
3
1

Relationship

2
7

Authors

Journals

citations
Cited by 37 publications
(13 citation statements)
references
References 32 publications
0
13
0
Order By: Relevance
“…The difference in CPU elapse time is more apparent for large images. Although in our experiments we adopt the fast computation of ZMs [22][23][24][25], ART has speed advantage over ZMs due to its low computation complexity, thus providing minimum CPU elapse time for all images. The proposed ZM-UNLM-based approach with order of moment p max = 4 uses only nine moments which are sufficient to represent the useful characteristics of an image, whereas the existing DCT-UNLM approach uses 15 DCT coefficients extracted in a zig-zag manner.…”
Section: Speed Analysismentioning
confidence: 99%
“…The difference in CPU elapse time is more apparent for large images. Although in our experiments we adopt the fast computation of ZMs [22][23][24][25], ART has speed advantage over ZMs due to its low computation complexity, thus providing minimum CPU elapse time for all images. The proposed ZM-UNLM-based approach with order of moment p max = 4 uses only nine moments which are sufficient to represent the useful characteristics of an image, whereas the existing DCT-UNLM approach uses 15 DCT coefficients extracted in a zig-zag manner.…”
Section: Speed Analysismentioning
confidence: 99%
“…There are two solutions to this discrepancy: one is based on resampling images into polar coordinates while the other is based on transforming Zernike moments into Cartesian coordinates. Although the first method is computationally efficient [26][27], it is impractical since all images need to be resampled, which is difficult and tedious operation for large image databases. The second approach does not suffer from that kind of problem and therefore is more practical [1].…”
Section: Introductionmentioning
confidence: 99%
“…Recently, Singh and Upneja [24] and Singh et al [25] have developed methods for the accurate and fast computation of ZMs which alleviate all these problems and facilitate their use for high‐capacity image watermarking. The accuracy in ZMs computation is achieved by using high‐order numerical integration instead of zeroth‐order approximation (ZOA) adopted by existing methods.…”
Section: Introductionmentioning
confidence: 99%
“…The accuracy in ZMs computation is achieved by using high‐order numerical integration instead of zeroth‐order approximation (ZOA) adopted by existing methods. The two errors prevalent in the computation of ZMs – geometric error and numerical integration error – are reduced simultaneously by proposing an accurate computational framework [24]. Better speed and numerically stability is achieved by using recursive algorithms for the computation of high‐order moments.…”
Section: Introductionmentioning
confidence: 99%