Power systems with a high proportion of inverter-based sources like photovoltaics require a substantial short-circuit current ratio to ensure strong voltage support capabilities. However, this also increases the system’s short-circuit current capacity and levels, which may potentially affect the safe operation of system equipment and current-carrying conductors. To evaluate the operational risks, this paper proposes a quantitative calculation model for the critical integration proportion of grid-connected inverter-interfaced power sources based on short-circuit current over-limit probability. Firstly, according to the verification criterion about short-circuit current during the selection of the switching equipment and conductors in the power system, the short-circuit current over-limit probability evaluation system with five indices is established. Secondly, considering the impact of the increased grid integration proportion of inverter-based power sources on short-circuit currents, an evaluation process for operational risk probabilities is proposed. Based on this, the critical access proportion for inverter-based power source integration in the power grid can be calculated. Finally, the proposed model is used to assess the operational risk probability for a 220 kV system which includes a high proportion of inverter-based power sources in the Anhui area, China. Through the analysis of cumulative probability distribution curves, the critical grid integration proportion interval for the transition from normal to high proportion stages of inverter-based power sources is determined.