Abstract:Researchers gravitate towards Generative Adversarial Networks (GAN) to create artificial images. However, GANs suffer from convergence issues, mode collapse, and overall complexity in balancing the Nash Equilibrium. Images generated are often distorted, rendering them useless. We propose a combination of Variational Autoencoders (VAEs) and a statistical oversampling method called K-Nearest Neighbor OveRsampling (KNNOR) to create artificial images. This combination of VAE and KNNOR results in more life-like ima… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.