2021
DOI: 10.1017/prm.2020.91
|View full text |Cite
|
Sign up to set email alerts
|

Fast and slow decay solutions for supercritical fractional elliptic problems in exterior domains

Abstract: We consider the fractional elliptic problem: where B1 is the unit ball in ℝ N , N ⩾ 3, s ∈ (0, 1) and p > (N + 2s)/(N − 2s). We prove that this problem has infinitely many solutions with slow decay O(|x|−2s/(p−1)) at infinity. In addition, for each s ∈ (0, 1) there exists P s  > (N + 2s)/(N − 2s), for any (N + 2s)/(N − 2s) < p < P s , the above problem has a solution with fast decay O(|x|2s−N). This result is the extension of the work by Dávila, de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 21 publications
0
0
0
Order By: Relevance