Three-dimensional
(3D) culture via micropattern arrays to generate
cellular spheroids seems a promising in vitro biomimetic
system for liver tissue engineering applications, such as drug screening.
Recently, organ-derived decellularized extracellular matrix emerges
as arguably the most biomimetic bioink. Herein, decellularized liver
matrix (DLM)-derived micropattern array chips were developed to fabricate
size-controllable and arrangement-orderly HepG2 spheroids for drug
screening. The porcine DLM was obtained by the removal of cellular
components and then ground into powder, followed by enzymolysis. DLM
as a coating substrate was compared with collagen type I (Col I) and
Matrigel in terms of biological performance for enhancing cell adhesion,
proliferation, and functions. Subsequently, we used poly(dimethylsiloxane)
(PDMS) to adsorb DLM as the bioink to fabricate micropattern array
chips. The optimal shape and size of micropattern were determined
by evaluating the morphology, viability, and functions of HepG2 3D
cellular aggregates. In addition, drug-susceptibility testing (paclitaxel,
doxorubicin HCl, and disulfiram) was performed on this novel platform.
The DLM provided the tissue-specific microenvironment that provided
suitable supports for HepG2 cells, compared to Col I and Matrigel.
A circular micropattern with a diameter of 100 μm was the optimal
processing parameter to rapidly fabricate large-scale, size-controllable,
and arrangement-orderly HepG2 cellular aggregates with 3D spheroid’s
shape and high cell viability. Drug screening testing showed that
the effect of a drug could be directly demonstrated on-chip by confocal
microscopy measuring the viability of spheroids. We provide a novel
platform for the large-scale generation of HepG2 spheroids with uniform
size and arrangement, thus bringing convenience, reducing error, and
increasing reproducibility for a rapid drug discovery by fluorescence
quantitative analysis. This methodology may be possible to apply in
advancing personalized medicine and drug discovery.