Many physical phenomena are modeled as stochastic searchers looking for targets. In these models, the probability that a searcher finds a particular target, its so-called hitting probability, is often of considerable interest. In this work we determine hitting probabilities for stochastic search processes conditioned on being faster than a random short time. Such times have been used to model stochastic resetting or stochastic inactivation. These results apply to any search process, diffusive or otherwise, whose unconditional short-time behavior can be adequately approximated, which we characterize for broad classes of stochastic search. We illustrate these results in several examples and show that the conditional hitting probabilities depend predominantly on the relative geodesic lengths between the initial position of the searcher and the targets. Finally, we apply these results to a canonical evidence accumulation model for decision making.