Parallel computing for the three-dimensional spatial spectral volume integral equation method is presented for the computation of electromagnetic scattering by finite dielectric scatterers in a layered medium. The first part exploits the Gabor-frame expansion to compute the Gabor coefficients of scatterers in a parellel manner. The second part concerns the decomposition and restructuring of the matrix-vector product of this spatial spectral volume integral equation into (partially) independent components to enable parallel computing. Both capitalize on the hardware to reduce the computation time by shared-memory parallelism. Numerical experiments in the form of solving electrically large scattering problems, namely volumes up to 1300 cubic wavelengths, in combination with a large number of finite scatterers show a significant reduction in wall-clock time owing to parallel computing, while maintaining accuracy.