Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The rapid development and widespread application of Unmanned Aerial Vehicles (UAV) have raised significant concerns about safety and privacy, thus requiring powerful anti-UAV systems. This survey provides an overview of anti-UAV detection and tracking methods in recent years. Firstly, we emphasize the key challenges of existing anti-UAV and delve into various detection and tracking methods. It is noteworthy that our study emphasizes the shift toward deep learning to enhance detection accuracy and tracking performance. Secondly, the survey organizes some public datasets, provides effective links, and discusses the characteristics and limitations of each dataset. Next, by analyzing current research trends, we have identified key areas of innovation, including the progress of deep learning techniques in real-time detection and tracking, multi-sensor fusion systems, and the automatic switching mechanisms that adapt to different conditions. Finally, this survey discusses the limitations and future research directions. This paper aims to deepen the understanding of innovations in anti-UAV detection and tracking methods. Hopefully our work can offer a valuable resource for researchers and practitioners involved in anti-UAV research.
The rapid development and widespread application of Unmanned Aerial Vehicles (UAV) have raised significant concerns about safety and privacy, thus requiring powerful anti-UAV systems. This survey provides an overview of anti-UAV detection and tracking methods in recent years. Firstly, we emphasize the key challenges of existing anti-UAV and delve into various detection and tracking methods. It is noteworthy that our study emphasizes the shift toward deep learning to enhance detection accuracy and tracking performance. Secondly, the survey organizes some public datasets, provides effective links, and discusses the characteristics and limitations of each dataset. Next, by analyzing current research trends, we have identified key areas of innovation, including the progress of deep learning techniques in real-time detection and tracking, multi-sensor fusion systems, and the automatic switching mechanisms that adapt to different conditions. Finally, this survey discusses the limitations and future research directions. This paper aims to deepen the understanding of innovations in anti-UAV detection and tracking methods. Hopefully our work can offer a valuable resource for researchers and practitioners involved in anti-UAV research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.