2015
DOI: 10.1016/j.apnum.2014.10.003
|View full text |Cite
|
Sign up to set email alerts
|

Fast ESPRIT algorithms based on partial singular value decompositions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
16
0

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
3
1

Relationship

1
8

Authors

Journals

citations
Cited by 29 publications
(16 citation statements)
references
References 19 publications
0
16
0
Order By: Relevance
“…In one variable, this problem and its solution date back to Prony (Prony, 1795) in 1795 and since then various numerical methods have been devised to solve the problem, in particular the ESPRIT and MUSIC algorithms (Roy and Kailath, 1989;Schmidt, 1986) from multi source radar detection with extensions to higher dimensions on grids in (Rouquette and Najim, 2001;Yilmazer et al, 2006). One should also consider (Potts and Tasche, 2015) for recent improvements and (Plonka and Tasche, 2014) for a survey on Prony's method and its extensions and generalizations. The matrix pencil approach for the Hankel matrices has also been considered in (Hua and Sarkar, 1990;Hua, 1992) in one and two variables.…”
Section: Introductionmentioning
confidence: 99%
“…In one variable, this problem and its solution date back to Prony (Prony, 1795) in 1795 and since then various numerical methods have been devised to solve the problem, in particular the ESPRIT and MUSIC algorithms (Roy and Kailath, 1989;Schmidt, 1986) from multi source radar detection with extensions to higher dimensions on grids in (Rouquette and Najim, 2001;Yilmazer et al, 2006). One should also consider (Potts and Tasche, 2015) for recent improvements and (Plonka and Tasche, 2014) for a survey on Prony's method and its extensions and generalizations. The matrix pencil approach for the Hankel matrices has also been considered in (Hua and Sarkar, 1990;Hua, 1992) in one and two variables.…”
Section: Introductionmentioning
confidence: 99%
“…In the polynomial method, small variations in the coefficients of equation ( 2 ) due to signal noise can result in large variations in its zeros and, consequently, the frequencies of the approximation will vary greatly. Parametric spectral estimation techniques, such as MUSIC (MUltiple SIgnal Classification) [ 50 ], ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) [ 51 ] or fast ESPRIT [ 52 ] offer an alternative that in many cases make it possible to obtain more robust solutions. [ 53 ] presents an algorithm for the factorization of a matrix pencil based on QR decomposition of a rectangular Hankel matrix, which simplifies the ESPRIT method.…”
Section: Discussionmentioning
confidence: 99%
“…In this respect it can be considered an extension of the well-known MUSIC [40] and ESPRIT [34] methods, where zero eigenvectors of a symmetric and positive semidefinite measurement covariance matrix are determined and set an eigenvalue problem. A more sophisticated variant of ESPRIT can be found in [32]. As pointed out in [31], the Frobenius companion matrix of the Prony polynomial interacts nicely with the Hankel matrix of the samples which can be used to define a generalized eigenvalue problem for matrix pencils, see [17].…”
Section: Comparison To Existing Methodsmentioning
confidence: 99%