2024
DOI: 10.1002/aisy.202300678
|View full text |Cite
|
Sign up to set email alerts
|

Fast Exploring Literature by Language Machine Learning for Perovskite Solar Cell Materials Design

Lei Zhang,
Yiru Huang,
Leiming Yan
et al.

Abstract: Making computers automatically extract latent scientific knowledge from literature is highly desired for future materials and chemical research in the artificial intelligence era. Herein, the natural language processing (NLP)‐based machine learning technique to build language models and automatically extract hidden information regarding perovskite solar cell (PSC) materials from 29 060 publications is employed. The concept that there are light‐absorbing materials, electron‐transporting materials, and hole‐tran… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 69 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?