Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Borehole measurements of nuclear magnetic resonance (NMR) are routinely used to estimate in situ rock and fluid properties. Conventional NMR interpretation methods often neglect bed-boundary and layer-thickness effects in the calculation of fluid volumetric concentrations and NMR relaxation-diffusion correlations. Such effects introduce notable spatial averaging of intrinsic rock and fluid properties across thinly bedded formations or in the vicinity of boundaries between layers exhibiting large property contrasts. Forward modeling and inversion methods can mitigate the aforementioned effects and improve the accuracy of true layer properties in the presence of mud-filtrate invasion and borehole environmental effects across spatially complex formations. We have developed a fast and accurate algorithm to simulate borehole NMR measurements using the concept of spatial sensitivity functions (SSFs) that honor NMR physics and incorporate tool, borehole, and formation geometry. Tool sensitivity maps are derived from a 3D multiphysics forward model that couples NMR tool properties, magnetization evolution, and electromagnetic propagation. In addition, a multifluid relaxation model based on Brownstein-Tarr’s equation is introduced to estimate layer NMR porosity decays and relaxation-diffusion correlations from pore-size-dependent rock and fluid properties. The latter model is convolved with the SSFs to reproduce borehole NMR measurements. The results indicate that NMR spatial sensitivity is controlled by porosity, electrical conductivity, excitation pulse duration, and tool geometry. We benchmark and verify the SSF-derived forward approximation against 3D multiphysics simulations for a series of synthetic cases with variable bed thickness and petrophysical properties, and in the presence of mud-filtrate invasion in a vertical well. Results indicate that the approximation can be executed in a few seconds in a central processing unit, by a factor of 1000 times faster than rigorous multiphysics calculations, with maximum root-mean-square errors of 1%.
Borehole measurements of nuclear magnetic resonance (NMR) are routinely used to estimate in situ rock and fluid properties. Conventional NMR interpretation methods often neglect bed-boundary and layer-thickness effects in the calculation of fluid volumetric concentrations and NMR relaxation-diffusion correlations. Such effects introduce notable spatial averaging of intrinsic rock and fluid properties across thinly bedded formations or in the vicinity of boundaries between layers exhibiting large property contrasts. Forward modeling and inversion methods can mitigate the aforementioned effects and improve the accuracy of true layer properties in the presence of mud-filtrate invasion and borehole environmental effects across spatially complex formations. We have developed a fast and accurate algorithm to simulate borehole NMR measurements using the concept of spatial sensitivity functions (SSFs) that honor NMR physics and incorporate tool, borehole, and formation geometry. Tool sensitivity maps are derived from a 3D multiphysics forward model that couples NMR tool properties, magnetization evolution, and electromagnetic propagation. In addition, a multifluid relaxation model based on Brownstein-Tarr’s equation is introduced to estimate layer NMR porosity decays and relaxation-diffusion correlations from pore-size-dependent rock and fluid properties. The latter model is convolved with the SSFs to reproduce borehole NMR measurements. The results indicate that NMR spatial sensitivity is controlled by porosity, electrical conductivity, excitation pulse duration, and tool geometry. We benchmark and verify the SSF-derived forward approximation against 3D multiphysics simulations for a series of synthetic cases with variable bed thickness and petrophysical properties, and in the presence of mud-filtrate invasion in a vertical well. Results indicate that the approximation can be executed in a few seconds in a central processing unit, by a factor of 1000 times faster than rigorous multiphysics calculations, with maximum root-mean-square errors of 1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.