Holography is a promising technology for photo-realistic three-dimensional (3D) displays because of its ability to replay the light reflected from an object using a spatial light modulator (SLM). However, the enormous computational requirements for calculating computer-generated holograms (CGHs)—which are displayed on an SLM as a diffraction pattern—are a significant problem for practical uses (e.g., for interactive 3D displays for remote navigation systems). Here, we demonstrate an interactive 3D display system using electro-holography that can operate with a consumer’s CPU. The proposed system integrates an efficient and fast CGH computation algorithm for line-drawn 3D objects with inter-frame differencing, so that the trajectory of a line-drawn object that is handwritten on a drawing tablet can be played back interactively using only the CPU. In this system, we used an SLM with 1,920 $$\times $$
×
1,080 pixels and a pixel pitch of 8 μm × 8 μm, a drawing tablet as an interface, and an Intel Core i9–9900K 3.60 GHz CPU. Numerical and optical experiments using a dataset of handwritten inputs show that the proposed system is capable of reproducing handwritten 3D images in real time with sufficient interactivity and image quality.